Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame
نویسندگان
چکیده
The flame in a Type Ia supernova is a conglomerate structure which, depending on density, may involve separate regions of carbon, oxygen and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions increases as the density declines until eventually, below about 2 × 10 g cm, only carbon burning remains active, the other two burning phases having “frozen out” on stellar scales. Between 2 and 3 × 10 g cm however, there remains an energetic oxygen burning region that trails the carbon burning by an amount that is sensitive to the turbulence intensity. As the carbon flame makes a transition to the distributed regime (Karlovitz number >∼10), the characteristic separation between the carbon and oxygen burning regions increases dramatically, from a fraction of a meter to many kilometers. The oxygen-rich mixture between the two flames is created at a nearly constant temperature, and turbulence helps to maintain islands of well-mixed isothermal fuel as the temperature increases. The delayed burning of these regions can be supersonic and could initiate a detonation. Subject headings: supernovae: general; hydrodynamics, shock waves, turbulence
منابع مشابه
On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae
The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilization—which is a result of an interplay between the LandauDarrieus instability and a nonlinear stabilization mechanism—is studied for the case of...
متن کاملFlame-driven Deflagration-to-detonation Transitions in Type Ia Supernovae?
Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the i...
متن کاملA Subgrid-scale Model for Deflagration-to-Detonation Transitions in Type Ia Supernova Explosion Simulations
Context. A promising model for normal Type Ia supernova (SN Ia) explosions are delayed detonations of Chandrasekhar-mass white dwarfs, in which the burning starts out as a subsonic deflagration and turns at a later phase of the explosion into a supersonic detonation. The mechanism of the underlying deflagration-to-detonation transition (DDT) is unknown in detail, but necessary conditions have b...
متن کاملDirect Numerical Simulations of Type Ia Supernovae Flames II: The Rayleigh-Taylor Instability
A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime ...
متن کاملCan Deflagration-Detonation-Transitions occur in Type Ia Supernovae?
The mechanism for deflagration-detonation-transition (DDT) by turbulent preconditioning, suggested to explain the possible occurrence of delayed detonations in Type Ia supernova explosions, is argued to be conceptually inconsistent. It relies crucially on diffusive heat losses of the burned material on macroscopic scales. Regardless of the amplitude of turbulent velocity fluctuations, the typic...
متن کامل